モデルカリキュラムに沿った授業に対応すべく、近代科学社では「リテラシーレベル」から「応用基礎レベル」までモデルカリキュラムを踏まえた内容のものに加え、その準備段階やその先のステップアップを目指したものまで、幅広く様々な教科書をお届けしております。
この機会にぜひご覧いただき、先生方の講義にご活用ください。
数理・データサイエンス・AI 特集
高等学校では、2022 年度から「情報I」が必履修科目になり、すべての高校生が情報の基礎を学習します。本書では、情報I を学んだ高校生がさらに学びを深めたり、大学や社会で情報活用を行える力を習得したりすることを目的としています。
情報を活用するための知識やスキルは、バラバラなままでは使うことができません。本書では、「つながる」をキーワードに、「高等学校からの情報学習の連続性」や「各章の内容が互いにつながった形で体系的に理解できる」などのつながりを重視することで、コンピュータを安全に効率よく活用する方法を学び、さまざまな学習に情報機器を活用していくためのスキルを身に付けることができるように構成されています。コンピュータの操作説明には、Windows11とmacOS14 (Sonoma)を使用し、文書作成等ではWindows版のMicrosoft Office 2021を使用しています。
「数理・データサイエンス・AI /リテラシーレベル」に対応した新しいテキストが登場!
ファーストステップシリーズは、コンピュータを初めて本格的に学ぶ大学生・高専生を対象にしたものです。シリーズの中で、本書は、政府の「AI 戦略2019」によって、すべての大学・高専生が習得すべき「数理・データサイエンス・AI /リテラシーレベル」として策定されたモデルカリキュラム(2024 年2月改訂)に準拠した内容のテキストです。特に、コンピュータに関する学習をこれから始める文系学部の学生の皆さんにとっても、分かりやすく学んでいただけるように配慮しました。 本書ではAI やデータサイエンスの知識や仕組みについて、事例や図解を使って具体的に説明しています。また、それらがどのように使われ、どんな有効性があるのか、反面、どんな問題があるのかについても示しました。AI・データサイエンスを1から学ぶためにこの上ない一冊です。
【数理・データサイエンス・AI認定制度における応用基礎レベルをフォローした教科書!】
データサイエンス・AIの数学的な内容について詳細に説明し、紙と鉛筆だけで取り組める問題を数多く配置した教科書。各手法のアルゴリズムを学習と予測に分けて明示し、一般的な数学の教科書と同じように、概念の説明、例、問という構成で、章末には確認問題を掲載しています。
[問] 例の類題や概念の説明を補うための問題。
[確認問題] 章の内容を確認するための問題。データサイエンス検定やG検定などの検定を意識した4択問題もあり。
数理・データサイエンス・AI教育プログラム認定制度における「応用基礎レベル」から「エキスパートレベル」にステップアップするための必読書籍!